Characterization of Lie-type higher derivations of triangular rings
نویسندگان
چکیده
Abstract Let
منابع مشابه
Lie-type higher derivations on operator algebras
Motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study Lie-type higher derivations on operator algebras in the current work. It is shown that every Lie (triple-)higher derivation on some classical operator algebras is of standard form. The definition of Lie $n$-higher derivations on operator algebras and related pot...
متن کاملCharacterization of Lie higher Derivations on $C^{*}$-algebras
Let $mathcal{A}$ be a $C^*$-algebra and $Z(mathcal{A})$ the center of $mathcal{A}$. A sequence ${L_{n}}_{n=0}^{infty}$ of linear mappings on $mathcal{A}$ with $L_{0}=I$, where $I$ is the identity mapping on $mathcal{A}$, is called a Lie higher derivation if $L_{n}[x,y]=sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y in mathcal{A}$ and all $ngeqslant0$. We show that ${L_{n}}_{n...
متن کاملlie-type higher derivations on operator algebras
motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study lie-type higher derivations on operator algebras in the current work. it is shown that every lie (triple-)higher derivation on some classical operator algebras is of standard form. the definition of lie $n$-higher derivations on operator algebras and related pote...
متن کاملcharacterization of lie higher derivations on $c^{*}$-algebras
let $mathcal{a}$ be a $c^*$-algebra and $z(mathcal{a})$ the center of $mathcal{a}$. a sequence ${l_{n}}_{n=0}^{infty}$ of linear mappings on $mathcal{a}$ with $l_{0}=i$, where $i$ is the identity mapping on $mathcal{a}$, is called a lie higher derivation if $l_{n}[x,y]=sum_{i+j=n} [l_{i}x,l_{j}y]$ for all $x,y in mathcal{a}$ and all $ngeqslant0$. we show that ${l_{n}}_{n...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Georgian Mathematical Journal
سال: 2022
ISSN: ['1572-9176', '1072-947X']
DOI: https://doi.org/10.1515/gmj-2022-2195